Health News


27/Jan/19
4f1ac0c9cfb1d936baf92443a7736532.png

A polysaccharide (termed ACPS-1) from mycelia of Antrodia cinnamomea under submerged culture was purified by hot water extraction and successive DEAE-52 cellulose and Sephadex G-100 column chromatography, and structurally characterized by FTIR, NMR, periodate oxidation, Smith degradation, and GC-MS. ACPS-1 (MW 2.296 × 104 Da) was composed primarily of Man, Xyl, Ara, Fuc and Rha with a molar ratio of 31.27:1.77:1.44:1.34:1.00, and its backbone consisted of repeating α-(1 → 3), α-(1 → 6), α-(1 → 2), and α-(1 → 4) glycosidic linkages. ACPS-1 displayed strong in vitro growth-inhibitory effects on several human and mouse cancer cell lines (HeLa, A431, H22 and S180), and were not cytotoxic to normal mouse spleen cells. Studies of the inhibitory mechanism revealed that ACPS-1 induced apoptosis and cell cycle arrest (cells remained in G2/M phase) through blocking of topoisomerase I/tyrosyl-DNA phosphodiesterase I (TOP1/TDP1)-mediated DNA repair pathway. Our findings suggest that ACPS-1 has strong potential applications in pharmaceutical and food industries, and as a novel anticancer agent based on its dual TOP1/TDP1 inhibitory effect.


16/Jan/19
4f1ac0c9cfb1d936baf92443a7736532.png

Epstein-Barr virus (EBV) infection is associated with B cell lymphomas in humans. The latent membrane protein 1 (LMP-1) of EBV constitutively activates the JAK/STAT signaling pathway and contributes to the proliferation of EBV-infected primary human B lymphocytes. Thus, targeting LMP1-induced JAK/STAT signaling may prove effective in treating B-cell lymphomas. The extract of the fruiting body of Antrodia cinnamomea, has been reported to have cytotoxicity on blood cancer cells. Here, we report that the bioactivity of antcin H, an analog of the JAK2 inhibitor zhankuic acid A (ZAA), inhibits LMP1-induced JAK/STAT related signaling and induces lymphoma cell line apoptosis. Moreover, antcin H enhances low-dose methotrexate (MTX) cytotoxicity against lymphoma cells. Treatment of antcin H with low-dose MTX significantly suppressed tumor growth and prolonged the survival of tumor-bearing mice. Our findings indicate antcin H as a potential therapeutic agent for the treatment of EBV-infected cancer cells.


29/Sep/18

Antrodia cinnamomea (AC) is a medicinal fungal species that has been widely used traditionally in Taiwan for the treatment of diverse health-related conditions including cancer. It possesses potent anti-inflammatory and antioxidant properties in addition to its ability to promote cancer cell death in several human tumors. Our aim was to improve the anticancer activity of AC in hepatocellular carcinoma (HCC) through its cocultivation with ginger aiming at tuning the active ingredients. HCC cell lines, Huh-7 and HepG2 were used to study the in vitro anticancer activity of the ethanolic extracts of AC (EAC) alone or after the cocultivation in presence of ginger (EACG). The results indicated that the cocultivation of AC with ginger significantly induced the production of important triterpenoids and EACG was significantly more potent than EAC in targeting HCC cell lines. EACG effectively inhibited cancer cells growth via the induction of cell cycle arrest at G2/M phase and induction of apoptosis in Huh-7 and HepG2 cells as indicated by MTT assay, cell cycle analysis, Annexin V assay, and the activation of caspase-3. In addition, EACG modulated cyclin proteins expression and mitogen-activated protein kinase (MAPK) signaling pathways in favor of the inhibition of cancer cell survival. Taken together, the current study highlights an evidence that EACG is superior to EAC in targeting cancer cell survival and inducing apoptotic cell death in HCC. These findings support that EACG formula can serve as a potential candidate for HCC adjuvant therapy.


Top
Tonicology.com
Life is hectic.
You deserve an advantage
Subscribe for $10 off your order.
Your email:
$10 discount instructions will be sent to your email.
2020 (C) All rights reserved.
Life is hectic.
You deserve an advantage
Subscribe for $10 off your order.
Your email:
$10 discount instructions will be sent to your email.
2018 (C) All rights reserved.